a2 United States Patent

US009223628B2

(10) Patent No.: US 9,223,628 B2

Rastogi 45) Date of Patent: Dec. 29, 2015
(54) TASK SCHEDULING BASED ON (56) References Cited
DEPENDENCIES AND RESOURCES
U.S. PATENT DOCUMENTS
(71) Applicant: eBay Inc., San Jose, CA (US) 5408663 A 4/1995 Miller
6,430,593 Bl 8/2002 Lindsley
(72) Inventor: Perv Rastogi, San Jose, CA (US) 7,372,857 Bl 5/2008 Kappler et al.
7,930,699 B2 4/2011 Santos-Gomez
. . 8,411,734 B2* 4/2013 Zhaoetal. ... 375/240
(73) Assignee: eBay Inc., San Jose, CA (US) 2005/0134893 Al 6/2005 Han
2006/0265690 Al  11/2006 Motoyama et al.
(*) Notice: Subject to any disclaimer, the term of this 2011/0276968 Al* 112011 Kandetal. ...cccoocvvunenn.. 718/102
patent is extended or adjusted under 35 2011/0321051 Al 12/2011 Rastogi
U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS
(21)  Appl. No.: 14/509,936 “U.S. Appl. No. 13/166,395, Final Office Action mailed Apr. 25,
T ’ 2014”, 18 pgs.
o “U.S. Appl. No. 13/166,395, Final Office Action mailed Aug. 6,
(22) Filed: Oct. 8, 2014 2013, 15 ps.
“U.S. Appl. No. 13/166,395.* Non Final Office Action mailed Apr. 3,
(65) Prior Publication Data 20137, 13 pgs.
“U.S. Appl. No. 13/166,395, Non Final Office Action mailed Dec. 6,
US 2015/0026691 Al Jan. 22, 2015 2013”, 16 ps.
(Continued)
Related U.S. Application Data Primary Examiner — Camquy Truong
(63) Continuation of application No. 13/166,395, filed on (74) Attorney, Agent, or Firm — Schwegman Lundberg &
Jun. 22, 2011. Woessner, P.A.
(60) Provisional application No. 61/358,837, filed on Jun. (57) ABSTRACT
25, 2010. An example system identifies a set of tasks as being desig-
nated for execution, and the set of tasks includes a first task
(51) Imt.CL and a second task. The example system accesses task depen-
GO6F 9/46 (2006.01) dency data that corresponds to the second task and indicates
GO6F 9/50 (2006.01) that the first task is to be executed prior to the second task. The
HO4L 29/08 (2006.01) example system, based on the task dependency data, gener-
GOG6F 9/48 (2006.01) ates a task dependency model of the set of tasks. The depen-
(52) US.CL dency model indicates that the first task is to be executed prior
CPC ..o GOGF 9/5038 (2013.01); GOGF 9/4881 to the second task. The example system schedules an execu-
(2013.01); HO4L 29/08963 (2013.01) tion of'the first task, which is scheduled to use a particular data
(58) Field of Classification Search processing resource. The scheduling is based on the depen-

CPC ..o GOG6F 9/5038; GOG6F 9/4881
See application file for complete search history.

119

120

130

140

150

dency model.

14 Claims, 12 Drawing Sheets

’/100



US 9,223,628 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

“U.S. Appl. No. 13/166,395, Notice of Allowance mailed Jul. 8,
2014, 8 pgs.
“U.S. Appl. No. 13/166,396, Notice of Allowance mailed Jul. 23,
2014, 6 pgs.

“U.S. Appl. No. 13/166,395, Response filed Mar. 6, 2014 to Non
Final Office Action mailed Dec. 6,2013”, 12 pgs.

“U.S. Appl. No. 13/166,395, Response filed Jun. 19, 2014 to Final
Office Action mailed Apr. 25, 2014, 12 pgs.

“U.S. Appl. No. 13/166,395, Response filed Jul. 2, 2013 to Non Final
Office Action mailed Apr. 3, 20137, 13 pgs.

“U.S. Appl. No. 13/166,395, Response filed Nov. 5, 2013 to Final
Office Action mailed Aug. 6, 2013, 13 pgs.

* cited by examiner



U.S. Patent

Dec. 29, 2015 Sheet 1 of 12
7N
110 ~ )
./
e

US 9,223,628 B2



U.S. Patent Dec. 29, 2015 Sheet 2 of 12 US 9,223,628 B2

~ 100
¥
7N
110 -
{
}\w" “
/ S
// \\\
/ ™.

/./‘/

4/ N /*/ N
a X /”” ™
' ;}m:as 150 m{ \ 160 w\ \:

-~ \\\ / N4

FIG. 2



US 9,223,628 B2

Sheet 3 of 12

U.S. Patent Dec. 29, 2015
310 - DG TaskExecutor
320 Resowrce Manager Priority iz;aisuiatm Thread Managsr ~ 3680
330 Resource Queue | Task Graph| Priorty Provider | | voad CORfig. ) qp
Frovider
390 ;"?\\ 385
340 ~ . Fa
Ranked | Resource /,f {
Pricrity | Config. S
Queue | Pravider [~ 3% / :{ \
$
VAR TR
380~ Resource Constraint Nult | Static | Dyn.
t { {
388 367 388

FIG. 3



U.S. Patent Dec. 29, 2015 Sheet 4 of 12 US 9,223,628 B2

400

410~ Software Apgplication

Ssrver Machine

&

¥
- N

{
420 "“\/S Network ™

f’ﬁ“”’\f -
/] \

/ |
/ i
/o .
/ k 450 gottware Application
/ ¥ Client Machine
/
/ 440 Software Application
&Z Client Machine
430

Softwarg Application
Ciient Maching

FIG. 4



U.S. Patent

Dec. 29, 2015 Sheet 5 of 12

US 9,223,628 B2

410

Software Application
Server Machine

510 Task Module Schedula Module
N Dependency

520 Modiite Document Module

530~ Generation Module

— 550

FIG. 5



U.S. Patent Dec. 29, 2015 Sheet 6 of 12 US 9,223,628 B2

e g {}{}

8510 - identify sat of tasks as designated for sxecution

¥
Access task dependency data
of individual task

620 ~

Y
Generaie depandency mods! data
far set of {asks

i

Schedule task {o execule
using data processing resource

l

Schedule another task {o concurrently exacule
using ancther data processing resource

830

4L

850

FIG. 6



U.S. Patent Dec. 29, 2015 Sheet 7 of 12 US 9,223,628 B2

600
610~ ¥

830 -
¥
710 — Access resource data
’ {e.q., capabilily data or conslraint data)
720
¥ i
630 ~ . o Oetermine that another task
h " is to be executed firs
|
¥
736 Schedule other task to exsoute first
using data progessing resource
¥
854G

FIG. 7



U.S. Patent Dec. 29, 2015 Sheet 8 of 12 US 9,223,628 B2

810 ¥

820

v

Diatect indication that another ask
810

has been sxacutad
830

F 3
- Update dependency modet data
630 ~ -t > R e

i response fo indication

¥

844




U.S. Patent Dec. 29, 2015 Sheet 9 of 12 US 9,223,628 B2

-~ 8O0

i~ Delerming that condition has baeon satistiad

l

930 — Determine that another task
is {0 be added to the set of tasks
|
L
¥
430 Access task dependengy dala

840

¥ }
G o e Add task to set of tasks
524

¥
8303 -~

T
564G

FIG. 9



U.S. Patent Dec. 29, 2015 Sheet 10 of 12 US 9,223,628 B2

e . 8{}{}
F
1010~ Heosive request that document be provided
¥
§10
8§20 —
830

é

Determineg that dependency mode! data
1020 ~
has no deadiocks

640 —

1030 Provide portion of document

FIG. 10



U.S. Patent Dec. 29, 2015 Sheet 11 of 12 US 9,223,628 B2

~— 800
¥

510 —

¥
6§20

Y
830

Y
840

%

1110 Exscute task using data procsssing resource
¥

11320~ Obtain informalion from execulion of {ask
¥

1130~ Generate portion of document

1140~ Provide portion of document

FIG. 11



U.S. Patent

Dec. 29, 2015

Sheet 12 of 12

US 9,223,628 B2
?/‘-1 200
Graphics Display 1210

Alphanumerio
Input Device

1212

Cursor Control
Device

1214

Storags Unit

Procassar
1202~ e .
1224-H  Instructions

Main Memary
1204~ o - =
1224~ instructions

1208~
e ]
1206~ Static Memory = el 2 oo
1990 Network Interface > -
Devics

12268 Metwork o oo

Maching-
readable Medium

instructions

—1216

-1222

11224

-
e /

FIG. 12

Signal Generation
{Device

—1218




US 9,223,628 B2

1
TASK SCHEDULING BASED ON
DEPENDENCIES AND RESOURCES

CROSS-RELATED APPLICATIONS

This application is a continuation of prior application Ser.
No. 13/166,395, filed on Jun. 22, 2011, entitled “Task Sched-
uling Based on Dependencies and Resources,” which claims
the priority benefit of U.S. Provisional Application No.
61/358,837, filed Jun. 25, 2010, and entitled, “Task Schedul-
ing Based on Dependencies and Resources.” The entire con-
tent of each of the above applications is incorporated herein
by reference.

TECHNICAL FIELD

The subject matter disclosed herein generally relates to the
processing of data. Specifically, the present disclosure
addresses systems and methods of task scheduling.

BACKGROUND

In data processing technology, software may include
instructions to perform various tasks. As used herein, a “task”
is a unit of work that may be scheduled for execution, either
independently of other tasks or dependent upon one or more
other tasks. Performance of a particular task may involve the
use of a data processing resource. As used herein, a “data
processing resource” is a tangible or intangible entity able to
facilitate execution of the task. A data processing resource
may include hardware (e.g., a processor, a memory location,
or a peripheral device), software (e.g., a socket, a port, a
device driver, or a network connection), or any suitable com-
bination thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

Some embodiments are illustrated by way of example and
not limitation in the figures of the accompanying drawings in
which:

FIG. 1is a diagram illustrating an example of an execution
schedule for a set of tasks, according to some example
embodiments;

FIG. 2 is adiagram illustrating an alternative example of an
execution schedule for the set of tasks, according to some
example embodiments;

FIG. 3 is an architectural diagram illustrating data struc-
tures supporting DGTaskExecutor, according to some
example embodiments;

FIG. 4 is a network diagram illustrating a network envi-
ronment, according to some example embodiments;

FIG. 5 is a block diagram of a software application server
machine, according to some example embodiments;

FIG. 6-11 are flowcharts illustrating operations in a method
of dependency-based task scheduling, according to some
example embodiments; and

FIG. 12 is a block diagram illustrating components of a
machine, according to some example embodiments, able to
read instructions from a machine-readable medium and per-
form any one or more of the methodologies discussed herein.

DETAILED DESCRIPTION

Example methods and systems are directed to task sched-
uling based on one or more dependencies and one or more
resources. Examples merely typify possible variations.
Unless explicitly stated otherwise, components and functions

10

15

20

25

30

35

40

45

50

55

60

65

2

are optional and may be combined or subdivided, and opera-
tions may vary in sequence or be combined or subdivided. In
the following description, for purposes of explanation,
numerous specific details are set forth to provide a thorough
understanding of example embodiments. It will be evident to
one skilled in the art, however, that the present subject matter
may be practiced without these specific details.

An example task scheduling system is referred to herein as
“DGTaskExecutor” or “Directed Graph TaskExecutor.”” The
example system is configured to perform one or more of the
example methods discussed herein.

DGTaskExecutor may facilitate a determining of a set of
tasks that can execute concurrently, management of one or
more task priorities (e.g., scheduled execution times), man-
agement of one or more constraints on a data processing
resource, or any suitable combination thereof. Figuratively,
DGTaskExecutor may orchestrate how and when tasks will
execute, for example, by dynamically assigning task priori-
ties and utilizing (e.g., applying) resource constraints.

A software application (e.g., a web application) may entail
one or more requests for execution of a set of tasks. In various
example embodiments, execution of the software application
causes the set of tasks to be requested for execution, desig-
nated as in need of execution, prescribed for execution,
marked for execution, or otherwise identified as designated
for execution. In some situations, two or more tasks within the
set of tasks may be executable concurrently (e.g., in a multi-
threaded implementation of the software application). In vari-
ous situations, the set of tasks may include one or more
individual tasks that, directly or indirectly, depend on another
task. For example, a particular task may be unable to execute
until another task has completed execution. As another
example, a task may be unable to execute until another task
has initiated execution, but may be executable any time there-
after.

DGTaskExecutor determines a priority of the task. For
example, this determination may include inferring the prior-
ity of the task, scheduling the task for execution, or any
suitable combination thereof. This determination may be
based on one or more explicit or implicit constraints on a data
processing resource to be utilized in executing the task.
DGTaskExecutor therefore may facilitate concurrent execu-
tion of independent tasks using independent data processing
resources. Moreover, a particular task may correspond to a
particular set of constraints applicable to one or more data
processing resources. Accordingly, DGTaskExecutor may
dynamically adjust one or more task priorities (e.g., task
schedules) as tasks are being executed, completing execution,
or any suitable combination thereof. In some example
embodiments, one or more constraints processed by
DGTaskExecutor may be overridden (e.g., by custom data,
user input, or data from the software application).

In facilitating the concurrent execution of two or more
tasks, DGTaskExecutor enables a multi-threaded implemen-
tation of the software application. DGTaskExecutor allows
the set of tasks (e.g., data defining the set) or a particular task
(e.g., data defining the task) to configure a number of threads
(e.g., additional threads beyond one thread) that will be used
to process the set of tasks. According to some example
embodiments, the set of tasks corresponds to work that may
be performed by a server in processing a request for informa-
tion identified by a network-based locator (e.g., a uniform
resource locator (URL)). The set of tasks may correspond to
a document to be provided (e.g., generated and communi-
cated) inresponse to a request for the document. For example,
a user may use a machine to access a URL, and a web server
that serves the URL may respond by generating a document



US 9,223,628 B2

3

and providing the document to the machine (e.g., via a net-
work). The generation of the document may involve (e.g.,
designate, request, prescribe, or mark) executing the set of
tasks, that, when executed, obtain information that is usable
to generate at least a portion of the document (e.g., one
portion, multiple portions, or the entirety of the document).

DGTaskExecutor identifies a set of tasks as being desig-
nated for (e.g., requested for, prescribed for, marked for, orin
need of) execution. For illustrative purposes, consider the set
of'tasks as including at least a first task and a second task (e.g.,
first and second tasks). DGTaskExecutor accesses task
dependency data of the second task. The task dependency
data may be accessed from a cache (e.g., to avoid runtime
costs). The task dependency data of the second task corre-
sponds to the second task and indicates that the first task is to
be executed prior to the second task. DGTaskExecutor gen-
erates a dependency model (e.g., dependency model data)
based on the task dependency data. The dependency model
may be visualized as a graph or map depicting the tasks and
the dependencies among the tasks. In particular, the depen-
dency model indicates that the first task is to be executed prior
to the second task. DGTaskExecutor then schedules an execu-
tion of the first task using a data processing resource. The
scheduling of the execution is based on the dependency
model (e.g., the dependency model data), and the execution of
the first task is scheduled to occur prior to an execution of the
second task. A dependency model may also be known as a
“task graph” (e.g., a graph, diagram, or chart that illustrates
dependencies among tasks).

DGTaskExecutor allows the user to dynamically change
the execution pattern of an application by granting or remov-
ing access to data processing resources (e.g., processing
threads) at runtime by modifying data processing resource
profiles (e.g., athread profile). A task graph may be generated
at runtime. Accordingly, a task graph may represent a current
“version” of the software application (e.g., application code),
and as the software application changes over time, the task
graph also changes. Generation of the task graph at runtime
may have the effect of allowing DGTaskExecutor to dynami-
cally optimize an execution plan for the set of tasks (e.g., as
opposed to having a developer periodically optimize the
execution plan manually).

FIG. 1is a diagram illustrating an example of an execution
schedule for a set 100 of tasks 110, 120, 130, 140, 150, and
160. The set 100 corresponds to a software application. For
example, execution (e.g., invocation or initiation) of the soft-
ware application may designate the set 100 for execution.

In the example shown, the tasks 110-160 are scheduled for
sequential execution (e.g., one task at a time, one after the
other). This is a single-threaded implementation of the set
100. As shown, execution of the task 110 is to occur prior to
execution of the task 120, which is to occur prior to execution
of'thetask 130. Similarly, execution of the task 130 is to occur
prior to execution of the task 140, which is to occur prior to
execution of the task 150, which in turn is to occur prior to
execution of the task 160.

Some of the tasks 130, 150, and 160 may be significant
tasks (e.g., primary tasks, critical tasks, or mandatory tasks)
to be performed during execution of the software application.
The other tasks 110, 120, and 140 may be tasks of lesser
importance (e.g., secondary tasks, preparatory tasks, or
optional tasks) that may be performed during execution of the
software application.

In the example shown, the task 120 has a dependency upon
the task 110. In other words, the task 120 depends on comple-
tion of the task 110, and proper execution of the task 120
requires that the task 110 be executed before the task 120.

25

40

45

55

4

Similarly, the task 130 depends on the task 120; the task 140
depends on the task 110; and each of the tasks 150 and 160
depends on the task 140.

While the above-described dependencies are satisfied by
the execution schedule shown in FIG. 1, it is not necessary
that, for example, the task 160 be executed after the task 150.
Rather, even though execution of the task 160 is scheduled to
occur after execution of the task 150, the task 160 is actually
executable any time after execution of the task 140, from
which the task 160 depends, regardless of execution of the
task 150. Accordingly, execution of the tasks 110-160 may be
parallelized to a significant degree in a multi-threaded imple-
mentation of the software application.

FIG. 2 is a diagram illustrating an alternative example of an
execution schedule for the set 100 of the tasks 110-160. In the
example shown, the tasks 110-160 are scheduled for multi-
threaded execution (e.g., execution of one or more tasks at a
time). The task 110 is scheduled to be executed first. As noted
above with respect to FIG. 1, the tasks 120 and 140 each
depend on the task 110, but neither of task 120 or 140 is
dependent upon the other. Hence, the tasks 120 and 140 may
be scheduled for concurrent execution (e.g., parallelized
execution), resulting in multi-threaded execution of the tasks
120 and 140. According to various example embodiments,
DGTaskExecutor implements an active form of concurrent
execution, in which the tasks 120 and 140 are constrained to
be executed fully or partially concurrently (e.g., their respec-
tive executions overlapping in time). For example, the tasks
120 and 140 may be scheduled in a synchronized manner to
begin execution contemporaneously (e.g., at substantially the
same time), to complete execution contemporaneously, or
any suitable combination thereof. In certain example embodi-
ments, DGTaskExecutor implements a passive form of con-
current execution, in which the tasks 120 and 140 are allowed
to execute concurrently but are scheduled independently of
one another.

Similarly, as noted above, the task 130 depends on the task
120, and each of the tasks 150 and 160 depend on the task 140.
The task 150 has two dependencies; the task 150 depends on
the task 120 and the task 140. Accordingly, the task 130 is
scheduled for execution any time after execution of the task
120; the task 150 is scheduled for execution anytime after
execution of the tasks 120 and 140; and the task 160 is
scheduled for execution anytime after execution of the task
140. As shown, the tasks 130, 150, and 160 may be scheduled
for concurrent execution, resulting in a multi-threaded execu-
tion of the tasks 130, 150, and 160. As with the tasks 120 and
140, concurrent execution of the tasks 130, 150, and 160 may
be active or passive in form.

Returning to FIG. 1, in a single-threaded implementation
of the software application, one data processing resource is
used at a time. Examples of the data processing resource
include: a processor, a database (e.g., a connection to a data-
base), and a service (e.g., a connection to a server to provide
the service).

Returning to FIG. 2, in a multi-threaded implementation of
the software application, one or more data processing
resources may be used at a time. As used herein, “multi-
threaded” means fully or partially multi-threaded.

According to various example embodiments, the software
application may specify one or more resource constraints
(e.g., constraints on one or more data processing resources).
Moreover, resource constraints may be specified by indi-
vidual tasks corresponding to the software application. Fur-
thermore, user input may be received and used to define one
or more resource constraints.



US 9,223,628 B2

5

In addition, DGTaskExecutor may allow the software
application to configure a number of additional threads (e.g.,
processing threads beyond a single thread) to be used in
processing the tasks of the software application. A data pro-
cessing resource may have a thread profile (e.g., a resource-
thread profile) that indicates a task execution pattern (e.g., a
queue of scheduled tasks) for that data processing resource.
DGTaskExecutor may adjust (e.g., update) the thread profile
to optimize usage of the data processing resource. Based on
the availability of resources, one or more of the DGTaskEx-
ecutor threads may select (e.g., configure a processor or other
data processing resource to select) the highest priority task
that can be executed. Tasks may be considered executable
once all of their prerequisites have been completed. Once a
thread has selected a task, the task may then be executed by
the thread (e.g., using a processor configured by the thread)
and the task may be no longer considered as executable.

An additional protection may be implemented the system
to further avoid deadlock. Specifically, the DGTaskExecutor
may be configured to complete once the last task finishes its
execution (and no other tasks were made executable or are
waiting for resources). This may be done regardless of the
number of tasks that remain within the dependency model
waiting for dependencies to complete. In some example
embodiments, this situation can only arise if a deadlock
missed being detected (e.g., because of a race condition).
Regardless of cause, these “missed” tasks would not have
been executed (e.g., because they are deadlocked). Therefore,
in various example embodiments, the DGTaskExecutor may
safely return and, in some cases, still guarantee that all of the
executable workload assigned to the DGTaskExecutor was
completed.

A developer of the software application may assign a task
to a data processing resource. For example, the data process-
ing resource may be identified by an enumerated value. The
developer may assign the task to the enumerated value, and all
tasks assigned to the enumerated value will share the same
data processing resource and its resource constraints, if any.

Dependencies among tasks may be described in terms of
“parent-child” relationships. For instance, where a second
task is dependent upon (e.g., must be executed after) a first
task, the second task may be described as a child of the first
task, and the first task is a parent of the second task. Parent
tasks may be described as prerequisites of a child task.

Prerequisites of a task may be static or dynamic. Static
prerequisites are parent tasks that are known (e.g., identified
in task dependency data) when a task is created or designated
for execution. Dynamic prerequisites are parent tasks that are
added after results from execution of the static prerequisites
are known. For example, dynamic dependencies allow such
parent tasks to be added after one or more of the static pre-
requisites have completed execution. As another example, a
new parent task may be added in response to satisfaction of a
condition (e.g., evaluated during execution of another parent
task).

Similarly, a child task may be created at runtime (e.g.,
during execution of one or more tasks) and added to the set of
tasks. In some example embodiments, execution of multiple
software applications designates multiple sets of tasks for
execution, and DGTaskExecutor may combine dependencies
(e.g., multiple instances of task dependency data) together for
task scheduling with shared threads, data processing
resources, or constraints on the data processing resources.

DGTaskExecutor may also support joins (e.g., structured
query language (SQL) join clauses). In some example

10

15

20

25

35

40

45

50

55

60

65

6

embodiments DGTaskExecutor supports two types of joins,
which allow for a task to wait for another task (or set of tasks)
to complete.

Simple join tasks (e.g., joins) can be added as a synchro-
nization point within a task graph. In some example embodi-
ments, a DGTaskExecutor system may support join tasks that
neither add nor impart any priority within the task graph. A
task can also, at runtime, ask to join on an existing task. When
this happens, the thread executing the task pauses execution
of the currently executing task, and instead, executes other
tasks until the join task has completed. Use of one or more
join tasks may have the effect of avoiding a deadlock in which
all threads in a system are waiting for some other join task to
complete, but as all threads are waiting, there are no threads to
do work. Moreover, the pause in execution may facilitate a
performance optimization such that worker threads spend a
minimum amount of time blocked (e.g., waiting for an avail-
able task).

DGTaskExecutor may also support the ability to pass data
to tasks via a context. When initially adding a task to a
dependency model (e.g., a dependency graph), a caller (e.g.,
calling function of a software application) may specify a
context (e.g., a context object) that is to be passed to the task.
Context objects may provide useful details from the software
application that may be utilized during execution of a task or
during determination of a set of prerequisites for a task. An
example of a context object is a normalized set of inputs (e.g.,
input data) received with a web server request.

According to some example embodiments, task data (e.g.,
task dependency data) specifies a task identifier (e.g., Task
1D) that uniquely identifies the task within DG TaskExecutor.
For example, the task identifier may be an enumerated value.
Task data may also specify a data processing resource to be
utilized by the task, as well as one or more constraints on the
data processing resource.

Task data (e.g., task configuration data) may specify an
ability to constrain a number of concurrently executing tasks
that may utilize a particular data processing resource. The
task data may specify usage of the data processing resource as
being unconstrained (e.g., unbounded). For example, light-
weight business logic (e.g., aggregate results from subtasks)
may utilize the data processing resource in an unconstrained
matter. The task data may specify a constraint upon the usage
of the data processing resource. Specifying a constraint may
have the effect of limiting a maximum concurrent utilization
of one or more data processing resources to a fixed (e.g.,
predetermined) number of concurrent executions. In various
example embodiments, a fixed number of concurrent execu-
tions may have the effect of reducing a likelihood of overbur-
dening the data processing resource when executing tasks
(e.g., rendering three-dimensional models, processing large
data sets, or other processor-intensive activities). The task
data may specity that the task is not executable or otherwise
will not impact the data processing resource. For example, a
task may be utilized solely to orchestrate subtasks (e.g.,
joins), and the task therefore never actually utilizes the data
processing resource. The task data may specity information
(e.g., metadata) pertinent to the data processing resource. For
example, where the data processing resource is a database, the
task data may specify a logical host or tier of the database.

Task data may specify any number of prerequisites (e.g., a
parent task) or no prerequisites, if none are needed. As noted
above, a prerequisite may be static or dynamic. Taken
together, static and dynamic prerequisites, if any, represent a
minimum set of tasks required for a task to execute. Task data
may specify a method that represents work to be accom-



US 9,223,628 B2

7

plished by execution of the task, as well as information per-
tinent to handling of exceptions, errors, or results generated
by the method.

DGTaskExecutor may also support an ability to save a
result (e.g., store information resultant from the execution of
atask). DGTaskExecutor may access (e.g., load) results from
any task, and DGTaskExecutor may update (e.g., modify or
clear) results from any task. Tasks may support the ability to
save information for access by other tasks or the calling
software application. If there is a need to garbage-collect the
object early (e.g., before fully processing a software applica-
tion), a method may also be provided by DG TaskExecutor.

DGTaskExecutor may also support runtime inspection or
auto-deduping of tasks within a task graph. Deduping, as used
herein, refers to identifying duplicate tasks. In various
example embodiments, deduping includes inhibiting execu-
tion of one or more duplicate tasks (e.g., ignoring the task,
removing the task, deleting the tasks, or preventing the task
from executing).

DGTaskExecutor may also support detection of deadlocks
(e.g., circular patterns of dependencies). According to some
example embodiments, DGTaskExecutor avoids deadlocks,
rather than prevents deadlocks. If a deadlock is detected,
DGTaskExecutor may raise an exception and save a “safe”
version of the dependency model. DGTaskExecutor may then
proceed to execute the set of tasks to “completion,” even if
proceeding will result in one or more individual tasks being
completed in an “error state.”

When adding tasks to the dependency model (e.g., a depen-
dency graph), DGTaskExecutor may use a lightweight algo-
rithm to evaluate static prerequisites. When a task is added,
DGTaskExecutor evaluates all of the new “static” prerequi-
site tasks to be added to expand the graph represented by this
task and discover the set of previously unknown tasks that
also need to be registered into the dependency model. This
new set of tasks may then be sorted (e.g., by DGTaskExecu-
tor) via topological sort so that the least dependent task will be
added to the dependency model first. The now sorted list may
be processed in order, and the DGTaskExecutor may ensure
that for each new task added to the dependency model all of
the prerequisites for the task are known (which may be guar-
anteed by the topological sort). Furthermore, DGTaskExecu-
tor may ensure that all of the prerequisites are not in a dead-
locked state already. In some example embodiments,
deadlocks are detected if, for some reason, the validation
shows that a prerequisite for a task was not registered before
the task itself was registered, It is in this way that the
DGTaskExecutor may guarantee that the dependency model
is always in a safely executable state. If a task cannot be added
to the dependency model (e.g., because one of its prerequi-
sites was not created), a circular dependency pattern exists
and may be detected by DGTaskExecutor In certain example
embodiments, the final step of registration of a task in the
dependency model is to rescore the model so that the task’s
priorities for the task itself and for its prerequisites properly
model the importance of the task within the system. Rescor-
ing may be implemented in various example embodiments so
that the threads (e.g., data processing resources configured by
the threads) select the most important task that is waiting to
execute.

Existing tasks may not need evaluation in this algorithm,
for example, because none of the existing tasks has a depen-
dency on any of the new tasks that are being added to the
dependency model. This may happen because DGTaskEx-
ecutor only adds previously unknown tasks to the dependency
model. If that dependency had existed previously, the task is

20

25

40

45

8

already in the dependency model, and as such, DGTaskEx-
ecutor would not need to add it.

For dynamic prerequisites and joins, a more complex and
expensive algorithm may be used to detect deadlock. The
algorithm evaluates whether any prerequisite tasks of the new
dependency is dependent on the task adding the dynamic
prerequisite or join. The algorithm may facilitate ensuring
that, even with this new dynamic prerequisite, the depen-
dency model is still safely executable, and that all of that
task’s children are able to execute. In the event that a deadlock
is detected, all of the tasks that are dependent upon the task
that is adding the dynamic dependency may be marked (e.g.,
by DGTaskExecutor in accordance with the algorithm) as
failed within the graph.

The DGTaskExecutor may maintain a state machine for
each task as it is being processed by the system. According to
various example embodiments, the states in order are:
Initial State—this is a state of a task before it has been regis-
tered;

Static Prerequisite Registration—this is a state where the
static prerequisites are expanded and registered within the
dependency model;

Wait for static prerequisite completion—this state indicates
that the task is waiting for the static prerequisites to complete;
Dynamic Prerequisite Registration—this is a state where the
task can load data from static prerequisites, and then choose
to register new tasks as dependencies;

Wait for dynamic prerequisite completion—this state indi-
cates that the task is waiting for the dynamic prerequisites to
complete;

Wait for resource availability to execute—once all prerequi-
sites have completed, this state may be used to indicate that
the task is to wait for resources to become available so that the
task can execute and return a result;

Execute—this state indicates that the task performs the duties
configured for it by the developer of the task; and
Completion—this state indicates that the task has finished
executing and that the results or exceptions generated by the
execution are available for loading by any dependent tasks.
Additionally, in the Completion state, any dependent tasks
whose prerequisites are now satisfied me be moved into the
“Wait for resource availability to execute” state.

DGTaskExecutor may also support a sharing of data from
a processing thread of a parent task with a processing thread
of'its child task. Examples of such data include Threadl.ocal
Cache and application context objects.

According to various example embodiments, execution of
a task is dependent on results from its prerequisites, if any.
Any exception, error, or results arising from execution of the
task is made available by DGTaskExecutor to any other task
that requests some or all of this information.

DGTaskExecutor may contain primary controls for gener-
ating a dependency model (e.g., dependency model data). The
following method may be called with one or more tasks to be
designated for execution:

public final class DGTaskExecutor
/*
* execute AndWait
*
* This method will start executing the task (as well
* as any other tasks within the task hierarchy) in
* parallel.
*

* The calling thread will wait until the specified task
* has executed and will return.
*/



US 9,223,628 B2

9

-continued

public <ContextType> void execute AndWait(IDG Task<? super
ContextType> taskToExecute, ContextType taskContext)
/*

* executeAnd Wait

*

* This method will start executing the specified tasks

* (as well as any other tasks within the task

* hierarchy) in parallel.

*

* The calling thread will wait until the specified task

* has executed and will return.

*/
public <ContextType> void executeAndWait(BaseEnum
tasked, List<? extends IDGTask<? super ContextType>>
tasksToExecute, ContextType taskContext)

FIG. 3 is an architectural diagram illustrating data struc-
tures 310, 320, 330, 340, 342, 350, 360, 370, 380, 390, 395,
396, 397, and 398 supporting DGTaskExecutor, according to
some example embodiments. DGTaskExecutor 310 is shown
to be built on Resource Manager 320, Task Graph 390, Pri-
ority Recalculator 380, and Thread Manager 360.

Resource Manager 320 manages Resource Queue 330,
which is supported by Ranked Priority Queue 340 and
Resource Configuration Provider 342. Ranked Priority
Queue 340 and Resource Configuration Provider 342 are
supported by Resource Constraint 350. Priority Recalculator
380 is supported by Task Graph 390 and Priority Provider
395, which provides an interface (e.g., a pluggable interface)
for scoring algorithms to be created. In some example
embodiments, three types of priority algorithms are sup-
ported: Null 396, Static 397, and Dynamic 398.

A ranked priority queue (e.g., Ranked Priority Queue 340)
is a data structure (e.g., a priority queue or a heap) that may
allow for random access, which may be an efficient way to
access the data structure. The ranked priority queue allows a
value (e.g., a rank) of a node to change independently of the
value used to rank the queue. In the context of concurrent
execution of tasks, the ranked priority feature results ina valid
ordering ofthe queue, even though a rank of a given node may
be changing. Changes to priority may be “published” to the
ranked priority queue at a later time, after which a
DGTaskExecutor system fetches a new rank and readjusts the
queue with respect to priority.

A resource constraint class (e.g., Resource Constraint 350)
may define a type of constraint on a data processing resource.
For example, the type may be “fixed” (e.g., with a fixed
number of data processing resources) or “unbounded” (e.g.,
with no constraint).

A resource queue class (e.g., Resource Queue 330) may
manage a number of data processing resources available with
respect to a given data processing resource. Tasks stored
within this class (e.g., task in queue) may be stored in priority
order, so that a task with a highest priority will have the first
chance to utilize a given data processing resource. The
resource queue class may be built upon the ranked priority
queue class and the resource constraint class.

A resource manager class (e.g., Resource Manager 320)
may manage one or more data processing resources, one or
more resource queries (e.g., queries regarding capacity, con-
straints, or status of a data processing resource), one or more
executable tasks, or any suitable combination thereof. In
some example embodiments, the resource manager class is
implemented as a group of resource queue classes.

A resource configuration provider class (e.g., Resource
Configuration Provider 342) manages the set of resource
constraints that exist within the system. This class allows for

10

15

20

25

30

35

40

45

50

55

60

65

10

both the modification of resource constraints within the sys-
tem at runtime as well as providing a base configuration/
implementation that can be overridden at compile time.

A priority provider class (e.g., Priority Provider 395) may
calculate an additional priority to be added to a given task. In
some example embodiments, DGTaskExecutor 310 supports
three types. In these example embodiments, null priority
(e.g., Null 396) always has a value of zero, such that all tasks
in the dependency model have equal priority. Static priority
(e.g., Static 397) always has a value of one. The priority of'a
task may be equal to a number of children that are dependent
on the task. Dynamic priority (e.g., Dynamic 398) may vary
based on the structure of a task graph. For example, the
priority that tasks pass to parent tasks may degrade in a
consistent fashion depending on position of the task in the
dependency model (e.g., closer to the root node where no
further parent tasks exist). Dynamic priority may prioritize
execution of tasks based on the structure of a task graph and
may favor sets of tasks that have wide dependency models
with many parallelizable tasks.

A thread configuration provider class (e.g., Thread Con-
figuration Provider 370) may provide a thread configuration
to the Thread Manager 360, which manages threads (e.g., in
conjunction with the Priority Recalculator 380 and the
Resource Manager 320).

A priority recalculator class (e.g., Priority Recalculator
380) may recalculate a priority added to a dependency model
by a dependency (e.g., a newly added dependency from a
newly added task). For example, the priority recalculator
class may add additional priority to each parent task of a
newly added task.

A task graph class (e.g., Task Graph 390) may allow a
software application to describe a dependency model (e.g.,
task graph). Analysis of the dependency model may be per-
formed by a DGTaskExecutor system to adjust the priority of
one or more nodes within the dependency model, as well as to
detect deadlocks. The task graph class may store representa-
tions of one or more child nodes of a task. These child nodes
may be used to find further tasks that may become executable.
The task graph class may facilitate finding tasks. Moreover,
the task graph class may facilitate loading or storing interme-
diate task results based on a task identifier of a task. In
general, the task graph class may manage the set of tasks that
have been registered with DGTaskExecutor 310.

Moreover, a task manager class (not shown) may provide
an internal fagade for the whole task executor. The task man-
ager class may facilitate one or more user-facing activities
(e.g., managing addition of tasks to the dependency model,
managing when dynamic prerequisites should be fetched,
how joins are managed, or deadlock detection) and may be
built upon a priority recalculator class (e.g., Priority Recal-
culator 380), a task graph class (e.g., Task Graph 390), a
resource manager class (e.g., Resource Manager 320), or any
suitable combination thereof.

The DGTaskExecutor 310 class may support an external
interface (e.g., a class) for accessing DGTaskExecutor (the
system, the method, or both) through utilization of the task
manager class to provide DGTaskExecutor services.

FIG. 4 is a network diagram illustrating a network envi-
ronment 400, according to some example embodiments. The
network environment 400 is shown to include a software
application server machine 410 and software application cli-
ent machines 430, 440, and 450, all coupled to each other via
a network 420.

Any of the machines shown in FIG. 4 may be implemented
in a general-purpose computer modified (e.g., configured or
programmed) by software to be a special-purpose computer



US 9,223,628 B2

11

to perform the functions described herein for that machine.
For example, a computer system able to implement any one or
more of the methodologies described herein is discussed
below with respect to FIG. 12, below. Moreover, any two or
more of the machines illustrated in FIG. 4 may be combined
into a single machine, and the functions described herein for
any single machine may be subdivided among multiple
machines.

The network 420 may be any network that enables com-
munication between machines (e.g., the software application
server machine 410 and the software application client
machine 430). Accordingly, the network 420 may be a wired
network, a wireless network, or any suitable combination
thereof. The network 420 may include one or more portions
that constitute a private network, a public network (e.g., the
Internet), or any suitable combination thereof.

FIG. 5 is ablock diagram of the software application server
machine 410, according to some example embodiments. The
software application server machine 410 is shown to include
a task module 510, a dependency module 520, a generation
module 530, a schedule module 540, and a document module
550, all coupled (e.g., configured) to communicate with each
other (e.g., via a bus, a shared memory, or a switch). Any of
these modules may be implemented using hardware or a
combination of hardware and software. Moreover, any two or
more of these modules may be combined into a single mod-
ule, and the functions described herein for a single module
may be subdivided among multiple modules.

FIG. 6-11 are flowcharts illustrating operations in a method
600 of dependency-based task scheduling, according to some
example embodiments. FIG. 6 illustrates a simple example of
the method 600. FIG. 7-11 illustrate various optional or alter-
native paths of the method 600.

As shown in FIG. 6, the method 600 includes:

identifying 610 a set of tasks as being requested for execu-
tion, with the set of tasks including a first task and a second
task;

accessing 620 task dependency data of the second task
(e.g., from a cache), with the task dependency data indicating
that the first task is to be executed prior to the second task;

generating 630 dependency model data of the set of tasks
based on the task dependency data, with the dependency
model data indicating that the first task is to be executed prior
to the second task, and the generating of the dependency
model data being performed by a processor of a machine; and

scheduling 640 an execution of the first task using a data
processing resource based on the dependency model data,
with the first task being scheduled for execution using the data
processing resource prior to an execution of the second task.
Scheduling 650 of another task is discussed below.

The identifying 610 may be performed by the task module
510. The accessing 620 may be performed by the dependency
module 520. The generating 630 may be performed by the
generation module 530. The scheduling 640 may be per-
formed by the schedule module 540.

Moreover, as shown in FIG. 7, the method 600 may
include:

accessing 710 resource data of the data processing
resource; and

scheduling 730 an execution of a third task of the plurality
of'tasks, with the third task being scheduled for execution by
the data processing resource prior to the execution of the first
task; wherein:

the generating of the dependency model data 630 is further
based on the resource data and includes determining 720 that
a third task of the plurality of tasks is to be executed prior to
the first task; and

25

40

45

50

55

12

the dependency model data indicates that the third task is to
be executed prior to the first task.

The accessing 710 may be performed by the dependency
module 520. The determining 720 may be performed by the
generation module 530. The scheduling 730 may be per-
formed by the schedule module 540.

In some example embodiments, the resource data indicates
at least one of a capability of the data processing resource or
a constraint on the data processing resource.

In certain example embodiments, the data processing
resource is at least one of a hardware resource, a software
resource, a network resource, or a service resource.

In various example embodiments, the data processing
resource is at least one of a database connection or the pro-
cessor of the machine.

As shown in FIG. 8, the method 600 may include detecting
810 an indication that a third task of the set of tasks has been
executed. In some situations, the generating of the depen-
dency model data includes updating 820 the dependency
model data in response to the indication, with the updating of
the dependency model data being based on further task
dependency data of the third task. The detecting 810 may be
performed by the dependency module 520. The updating 820
may be performed by the generation module 530.

As shown in FIG. 9, the method 600 may include deter-
mining 910 that a condition pertinent to the first task has been
satisfied, with the condition being pertinent to the execution
of the first task prior to the execution of the second task. In
certain situations, the identifying 610 of the plurality of tasks
includes adding 940 the first task to a further plurality of tasks
that includes the second task. The determining 910 may be
performed by the task module 510. The adding 940 may be
performed by the task module 510.

FIG. 9 further illustrates that method 600 may include:
determining 920 that a further task is to be added to the set of
tasks, with the determining being performed during at least
one of the execution of the first task or the execution of the
second task; and adding 940 the further task to the set of tasks.
The determining 920 may be performed by the task module
510.

Still referring to FIG. 9, the method 600 may include:
accessing 930 further task dependency data of the further
task, with the further task dependency data indicating that the
further task is to be executed after at least one of the execution
of the first task of the execution of the second task; and
updating the dependency model data based on the further task
dependency data. The accessing 930 may be performed by the
task module 510.

As shown in FIG. 10, the method 600 may include deter-
mining 1020 that the dependency model data is devoid of
information indicating that the second task is to be executed
prior the first task. The determining 1020 may be performed
by the generation module 530.

FIG. 10 further illustrates that the method 600 may include
receiving 1010 a request that a document be provided to a
user, with the document including a portion definable by
information resultant from the execution of the first task. In
some situations, the identifying 610 of the set of tasks is in
response to the request. The receiving 1010 may be per-
formed by the task module 510.

According to some example embodiments, the document
corresponds to a network-based locator; the request includes
the network-based locator; and the document module is con-
figured to generate the document based on the information
resultant from the execution of the first task.

Still referring to FIG. 10, the method 600 may include
providing 1030 the portion of the document to the user after



US 9,223,628 B2

13

the execution of the first task and during the execution of the
second task. In various situations, a further portion of the
document is definable by further information resultant from
the execution of the second task. The providing 1030 may be
performed by the document module 550.

Returning to FIG. 6, the method 600 may include sched-
uling 650 an execution of a third task of the set of tasks, with
the execution of the third task being scheduled as contempo-
raneous with the execution of the first task. The scheduling
650 may be performed by the schedule module 540.

As shown in FIG. 11, the method 600 may include:

obtaining 1120 information resultant from the execution of
the first task;

generating 1130 a portion of the document based on the
information resultant from the execution of the first task; and

providing 1140 the portion of the document in response to
a request that identifies a URL of the document.

The obtaining 1120 may be performed by the document
module 550. Moreover, the generating 1130 may be per-
formed by the document module 550. Furthermore, the pro-
viding 1140 may be performed by the document module 550.

According to certain example embodiments, the first task is
defined by a data structure and includes an instruction to
perform at least one of the retrieval of data from a database or
a conversion of the data.

In some example embodiments, the second task is defined
by a data structure that includes the task dependency data.

Still referring to FIG. 11, the method 600 may include
executing 1110 the first task using the data processing
resource. The executing 1110 may be performed by the docu-
ment module 550.

According to various example embodiments, one or more
of the methodologies described herein may facilitate the
scheduling or execution of tasks. In particular, where infor-
mation regarding dependencies among tasks is available
(e.g., as task dependency data corresponding to one or more
tasks), one or more of the methodologies discussed herein
may facilitate full or partial optimizations in task scheduling
and task execution. Accordingly, one or more of the method-
ologies discussed herein may obviate a need for single-
threaded implementation of the software application (e.g.,
execution of only one task at a time), which may have one or
more technical effects. Examples of technical effects include:
enhancing performance of the software application, reducing
completion time for execution of tasks corresponding to the
software application, and reducing user wait time for provi-
sion of a requested document.

FIG. 12 illustrates components of a machine 1200, accord-
ing to some example embodiments, that is able to read
instructions from a machine-readable medium (e.g., a non-
transitory machine-readable storage medium) and perform
any one or more of the methodologies discussed herein. Spe-
cifically, FIG. 12 shows a diagrammatic representation of the
machine 1200 in the example form of a computer system and
within which instructions 1224 (e.g., software) for causing
the machine 1200 to perform any one or more of the meth-
odologies discussed herein may be executed. In alternative
embodiments, the machine 1200 operates as a standalone
device or may be connected (e.g., networked) to other
machines. In a networked deployment, the machine 1200 may
operate in the capacity of a server machine or a client machine
in a server-client network environment, or as a peer machine
in a peer-to-peer (or distributed) network environment. The
machine 1200 may be a server computer, a client computer, a
personal computer (PC), a tablet computer, a laptop com-
puter, a netbook, a set-top box (STB), a personal digital
assistant (PDA), a cellular telephone, a smartphone, a web

10

15

20

25

30

35

40

45

50

55

60

65

14

appliance, a network router, a network switch, a network
bridge, or any machine capable of executing the instructions
1224 (sequentially or otherwise) that specify actions to be
taken by that machine. Further, while only a single machine is
illustrated, the term “machine” shall also be taken to include
a collection of machines that individually or jointly execute
the instructions 1224 to perform any one or more of the
methodologies discussed herein.

The machine 1200 is shown to include a processor 1202
(e.g., a central processing unit (CPU), a graphics processing
unit (GPU), a digital signal processor (DSP), an application
specific integrated circuit (ASIC), a radio-frequency inte-
grated circuit (RFIC), or any suitable combination thereof), a
main memory 1204, and a static memory 1206, which are
configured to communicate with each other via a bus 1208.
The machine 1200 may further include a graphics display
1210 (e.g., a plasma display panel (PDP), a liquid crystal
display (LCD), a projector, or a cathode ray tube (CRT)). The
machine 1200 may also include an alphanumeric input device
1212 (e.g., a keyboard), a cursor control device 1214 (e.g., a
mouse, a touchpad, a trackball, a joystick, a motion sensor, or
other pointing instrument), a storage unit 1216, a signal gen-
eration device 1218 (e.g., a speaker), and a network interface
device 1220.

The storage unit 1216 includes a machine-readable
medium 1222 on which is stored the instructions 1224 (e.g.,
software) embodying any one or more of the methodologies
or functions described herein. The instructions 1224 may also
reside, completely or at least partially, within the main
memory 1204, within the processor 1202 (e.g., within the
processor’s cache memory), or both, during execution thereof
by the machine 1200. Accordingly, the main memory 1204
and the processor 1202 may be considered as machine-read-
able media. The instructions 1224 may be transmitted or
received over a network 1226 (e.g., network 420) via the
network interface device 1220.

As used herein, the term “memory” refers to a machine-
readable medium able to store data temporarily or perma-
nently and may be taken to include, but not be limited to,
random-access memory (RAM), read-only memory (ROM),
buffer memory, flash memory, and cache memory. While the
machine-readable medium 1222 is shown in an example
embodiment to be a single medium, the term “machine-read-
able medium” should be taken to include a single medium or
multiple media (e.g., a centralized or distributed database, or
associated caches and servers) able to store instructions (e.g.,
instructions 1224). The term “machine-readable medium”
shall also be taken to include any medium that is capable of
storing instructions (e.g., software) for execution by the
machine, such that the instructions, when executed by one or
more processors of the machine (e.g., processor 1202), cause
the machine to perform any one or more of the methodologies
described herein. The term “machine-readable medium”
shall accordingly be taken to include, but not be limited to, a
data repository in the form of a solid-state memory, an optical
medium, a magnetic medium, or any suitable combination
thereof.

Throughout this specification, plural instances may imple-
ment components, operations, or structures described as a
single instance. Although individual operations of one or
more methods are illustrated and described as separate opera-
tions, one or more of the individual operations may be per-
formed concurrently, and nothing requires that the operations
be performed in the order illustrated. Structures and function-
ality presented as separate components in example configu-
rations may be implemented as a combined structure or com-
ponent. Similarly, structures and functionality presented as a



US 9,223,628 B2

15

single component may be implemented as separate compo-
nents. These and other variations, modifications, additions,
and improvements fall within the scope of the subject matter
herein.

Certain embodiments are described herein as including
logic or a number of components, modules, or mechanisms.
Modules may constitute either software modules (e.g., code
embodied on a machine-readable medium or in a transmis-
sion signal) or hardware modules. A “hardware module” is a
tangible unit capable of performing certain operations and
may be configured or arranged in a certain physical manner.
In various example embodiments, one or more computer
systems (e.g., a standalone computer system, a client com-
puter system, or a server computer system) or one or more
hardware modules of a computer system (e.g., a processor or
a group of processors) may be configured by software (e.g.,
an application or application portion) as a hardware module
that operates to perform certain operations as described
herein.

In some embodiments, a hardware module may be imple-
mented mechanically, electronically, or any suitable combi-
nation thereof. For example, a hardware module may include
dedicated circuitry or logic that is permanently configured to
perform certain operations. For example, a hardware module
may be a special-purpose processor, such as a field program-
mable gate array (FPGA) or an application-specific inte-
grated circuit (ASIC). A hardware module may also include
programmable logic or circuitry that is temporarily config-
ured by software to perform certain operations. For example,
a hardware module may include software encompassed
within a general-purpose processor or other programmable
processor. It will be appreciated that the decision to imple-
ment a hardware module mechanically, in dedicated and per-
manently configured circuitry, or in temporarily configured
circuitry (e.g., configured by software) may be driven by cost
and time considerations.

Accordingly, the term “hardware module” should be
understood to encompass a tangible entity, be that an entity
that is physically constructed, permanently configured (e.g.,
hardwired), or temporarily configured (e.g., programmed) to
operate in a certain manner or to perform certain operations
described herein. As used herein, “hardware-implemented
module” refers to a hardware module. Considering embodi-
ments in which hardware modules are temporarily configured
(e.g., programmed), each of the hardware modules need not
be configured or instantiated at any one instance in time. For
example, where the hardware modules comprise a general-
purpose processor configured by software to become a spe-
cial-purpose processor, the general-purpose processor may
be configured as respectively different hardware modules at
different times. Software may accordingly configure a pro-
cessor, for example, to constitute a particular hardware mod-
ule at one instance of time and to constitute a different hard-
ware module at a different instance of time.

Hardware modules can provide information to, and receive
information from, other hardware modules. Accordingly, the
described hardware modules may be regarded as being com-
municatively coupled. Where multiple hardware modules
exist contemporaneously, communications may be achieved
through signal transmission (e.g., over appropriate circuits
and buses) between or among two or more of the hardware
modules. In embodiments in which multiple hardware mod-
ules are configured or instantiated at different times, commu-
nications between such hardware modules may be achieved,
for example, through the storage and retrieval of information
in memory structures to which the multiple hardware mod-
ules have access. For example, one hardware module may

10

20

25

30

35

40

45

50

55

60

16

perform an operation and store the output of that operation in
a memory device to which it is communicatively coupled. A
further hardware module may then, at a later time, access the
memory device to retrieve and process the stored output.
Hardware modules may also initiate communications with
input or output devices, and can operate on a resource (e.g., a
collection of information).

The various operations of example methods described
herein may be performed, at least partially, by one or more
processors that are temporarily configured (e.g., by software)
or permanently configured to perform the relevant operations.
Whether temporarily or permanently configured, such pro-
cessors may constitute processor-implemented modules that
operate to perform one or more operations or functions
described herein. As used herein, “processor-implemented
module” refers to a hardware module implemented using one
Of More Processors.

Similarly, the methods described herein may be at least
partially processor-implemented, a processor being an
example ofhardware. For example, at least some of the opera-
tions of a method may be performed by one or more proces-
sors or processor-implemented modules. Moreover, the one
or more processors may also operate to support performance
of the relevant operations in a “cloud computing” environ-
ment or as a “software as a service” (SaaS). For example, at
least some of the operations may be performed by a group of
computers (as examples of machines including processors),
with these operations being accessible via a network (e.g., the
Internet) and via one or more appropriate interfaces (e.g., an
application program interface (API)).

The performance of certain of the operations may be dis-
tributed among the one or more processors, not only residing
within a single machine, but deployed across a number of
machines. In some example embodiments, the one or more
processors or processor-implemented modules may be
located in a single geographic location (e.g., within a home
environment, an office environment, or a server farm). In
other example embodiments, the one or more processors or
processor-implemented modules may be distributed across a
number of geographic locations.

Some portions of this specification are presented in terms
of algorithms or symbolic representations of operations on
data stored as bits or binary digital signals within a machine
memory (e.g., a computer memory). These algorithms or
symbolic representations are examples of techniques used by
those of ordinary skill in the data processing arts to convey the
substance of their work to others skilled in the art. As used
herein, an “algorithm™ is a self-consistent sequence of opera-
tions or similar processing leading to a desired result. In this
context, algorithms and operations involve physical manipu-
lation of physical quantities. Typically, but not necessarily,
such quantities may take the form of electrical, magnetic, or
optical signals capable of being stored, accessed, transferred,
combined, compared, or otherwise manipulated by a
machine. It is convenient at times, principally for reasons of
common usage, to refer to such signals using words such as
“data,” “content,” “bits,” “‘values,” “elements,” “symbols,”
“characters,” “terms,” “numbers,” ‘“numerals,” or the like.
These words, however, are merely convenient labels and are
to be associated with appropriate physical quantities.

Unless specifically stated otherwise, discussions herein
using words such as “processing,” “computing,” “calculat-
ing,” “determining,” “presenting,” “displaying,” or the like
may refer to actions or processes of a machine (e.g., a com-
puter) that manipulates or transforms data represented as
physical (e.g., electronic, magnetic, or optical) quantities
within one or more memories (e.g., volatile memory, non-

2 <

2 2 <

2 <



US 9,223,628 B2

17

volatile memory, or any suitable combination thereof), regis-
ters, or other machine components that receive, store, trans-
mit, or display information. Furthermore, unless specifically
stated otherwise, the terms “a” or “an” are herein used, as is
common in patent documents, to include one or more than
one instance. Finally, as used herein, the conjunction “or”
refers to a non-exclusive “or,” unless specifically stated oth-
erwise.

What is claimed is:

1. A method comprising:

accessing dependency model data of a plurality of tasks,
the plurality of tasks including a first task and a second
task, the dependency model data indicating dependen-
cies between the plurality of tasks and a priority of each
of the plurality of tasks;

scheduling an execution order of the plurality oftasks such
that the first task is scheduled to execute before the
second task;

receiving a request to add a third task to the dependency
model,;

based on the request, creating, by a processor of a machine,
an updated dependency model corresponding to the
third task and the plurality of tasks, the updated depen-
dency model indicating a dependency of the third task on
the second task;

updating the priority of the second task based on the depen-
dency of the third task on the second task; and

responsive to the updating of the priority of the second task,
adjusting the scheduled execution order of the plurality
of'tasks such that the second task is scheduled to execute
before the first task.

2. The method of claim 1, wherein:

the scheduling the execution order of the plurality of tasks
schedules a fourth task to execute before the second task,
based on the priority of the second task and the priority
of the fourth task.

3. The method of claim 1, wherein:

the updating of the priority of the second task is further
based on the dependency model data of the second task.

4. The method of claim 1, further comprising:

detecting an indication that a fourth task of the plurality of
tasks has been executed; and

in response to the detecting of the indication, creating a
further updated dependency model based on task depen-
dency data of the fourth task.

5. The method of claim 1, further comprising:

determining that a fourth task is to be added to the plurality
of'tasks, the determining being performed during execu-
tion of at least one of the first task or the second task; and

adding the fourth task to the plurality of tasks.

6. The method of claim 5, further comprising:

accessing task dependency data of the fourth task, the task
dependency data indicating that the fourth task is to be
executed after at least one of the execution of the first
task or the execution of the second task; and

based on the task dependency data of the fourth task, cre-
ating a further updated dependency model correspond-
ing to the first task, the fourth task, and the plurality of
tasks.

7. A system comprising:

a processor of a machine;

wherein the processor of the machine performs the steps
of:

a dependency module configured to access dependency
model data of a plurality of tasks, the plurality of tasks
including a first task and a second task, the dependency

10

40

45

60

18

model data indicating dependencies between the plural-
ity of tasks and a priority of each of the plurality of tasks;
a schedule module configured to:
schedule an execution order of the plurality of tasks such that
the first task is scheduled to execute before the second task;
and
a task module configured to receive a request to add a third
task to the dependency model;
the dependency module being further configured to:
based on the request, create an updated dependency model
corresponding to the third task and the plurality of tasks, the
updated dependency model indicating a dependency of the
third task on the second task and
update the priority of the second task based on the depen-
dency of the third task on the second task;
the schedule module being further configured to:
responsive to the updating of the priority of the second task,
adjust the scheduled execution order of the plurality of tasks
such that the second task is scheduled to execute before the
first task.
8. The system of claim 7, wherein:
the scheduling the execution order of the plurality of tasks
schedules a fourth task to execute before the second task,
based on the priority of the second task and the priority
of the fourth task.
9. The system of claim 7, wherein:
the updating of the priority of the second task is further
based on the dependency model data of the second task.
10. The system of claim 7, wherein:
the task module is further configured to:
detect an indication that a fourth task of the plurality of
tasks has been executed; and
the dependency module is further configured to:
in response to the detection of the indication, create a
further updated dependency model based on task
dependency data of the fourth task.
11. The system of claim 7, wherein the task module is
further configured to:
determine that a fourth task is to be added to the plurality of
tasks during execution of at least one of the first task or
the second task; and
add the fourth task to the plurality of tasks.
12. The system of claim 11, wherein the dependency mod-
ule is further configured to:
access task dependency data of the fourth task, the task
dependency data indicating that the fourth task is to be
executed after at least one of the execution of the first
task or the execution of the second task; and
based on the task dependency data of the fourth task, create
a further updated dependency model corresponding to
the first task, the fourth task, and the plurality of tasks.
13. A non-transitory machine-readable storage medium
comprising instructions that, in response to execution by a
machine, cause the machine to perform operations compris-
ing:
accessing dependency model data of a plurality of tasks,
the plurality of tasks including a first task and a second
task, the dependency model data indicating dependen-
cies between the plurality of tasks and a priority of each
of the plurality of tasks;
scheduling an execution order of the plurality of tasks such
that the first task is scheduled to execute before the
second task;
receiving a request to add a third task to the dependency
model,;
based on the request, creating an updated dependency
model corresponding to the third task and the plurality of



US 9,223,628 B2

19

tasks, the updated dependency model indicating a
dependency of the third task on a second task;

updating the priority of the second task based on the depen-
dency of the third task on the second task; and

responsive to the updating of the priority of the second task,
adjusting the scheduled execution order of the plurality
of'tasks such that the second task is scheduled to execute
before the first task.

14. The non-transitory machine-readable medium of claim

13, wherein:

the scheduling the execution order of the plurality of tasks
schedules a fourth task to execute before the second task,
based on the priority of the second task and the priority
of the fourth task.

#* #* #* #* #*

10

15

20



UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,223,628 B2 Page 1 of 1
APPLICATION NO. : 14/509936

DATED : December 29, 2015

INVENTOR(S) : Perv Rastogi

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the title page, in column 2, under “Other Publications™, line 5, Delete “13/166,395. @ Non”
and insert --13/166,395, Non--, therefor

Signed and Sealed this
Nineteenth Day of April, 2016

Tecbatle X Zen

Michelle K. Lee
Director of the United States Patent and Trademark Office



